Get more for less with POWER9

Who doesn’t expect more from a new product, let alone if it is the next generation of that product. Whether it is the “All New 2019 Brand Model” Car/Truck/SUV or, being a Macbook fan, the latest Macbook Pro and IOS (just keep the magnetic power cord)?

We want and expect more.  IBM POWER8 delivered more.  More performance, built-in virtualization on the Enterprise systems, mobile capacity on Enterprise systems to share capacity between like servers, a more robust reliability and availability subsystem as well as improved serviceability features from the low-end to high-end.  Yes, all while dramatically improving performance over previous generations.

How do you improve upon something that is already really good – I’m purposefully avoiding using the word “great” as it’ll make me sound like a sycophant who would accept a rock with a Power badge and call it “great”.  No, I am talking about actual, verifiable features and capabilities delivering real value to businesses.

Since the POWER9 Enterprise systems have yet to be announced and I only know what I know through my secret sources, I’ll limit my statements to just the currently available POWER9 Scale-out systems.

  • POWER8 Scale-out now include PowerVM Enterprise Edition licenses
  • Workload Optimized Frequency now delivers frequencies up to 20% higher over the nominal or marketed clock frequency
  • PCIe4 slots to support higher speed and bandwidth adapters
  • From 2 to 4X greater memory capacity on most systems
  • New “bootable” internal NVMe support
  • Enhanced vTPM for improved Secure Boot & Trusted Remote Attestation
  • SR-IOV improvements
  • CAPI 2.0 and OpenCAPI capability – the latter, though I’m unaware of any supported features is exciting in what it is designed and capable of doing.
  • Improved price points using IS memory

The servers also shed some legacy features that were getting long in the tooth.

  • Internal DVD players – in lieu of USB drive support
  • S924 with 18 drive backplane no longer includes add-on 8 x 1.8″ SSD slots

As consumers, we expect more from our next generation purchases, the same holds true with POWER9.  Get more capability, features and performance for less money.

Contact me if you would like a quote to upgrade to POWER9, running x86 workloads and would like to hear how you may be able to do far more with less as well as learn how my services team will ease any concerns or burdens you may have to remain on your aging and likely, higher cost servers by upgrading to POWER9.

 

 

Have it your way with POWER9

IBM POWER offers system footprint and capabilities to meet any client requirement.

Henry Ford is attributed with saying “you can have any color you want, as long as it is black”.  Consumers, whether on the retail or enterprise side like options and want to buy products the way they want them.

IBM’s recently announced AIX, IBMi and Linux capable POWER9 Scale-out servers as seen below or learn more about each here.

P9-portfolio

These 6 systems join the AC922 AI & Cognitive beast using NVLink 2.0 supporting up to 6 x H2O Nvidia Volta GPU’s

With the 6 POWER9 based systems announced February 13, 2018, IBM is offering clients choice – virtually “any color you want”.  With these systems, get a 2 RU (rack unit) or 4RU model, with 1 or 2 sockets in each. Cores ranging from 4 to 24 and memory from 16 GB to 4 TB of system memory.  Internal storage options from HDD, SSD to NVMe plus all of the connectivity options expected with PCIe adapters – except we see newer adapters with more ports running at higher speeds.

Run AIX , IBM i and Linux on a 1 or 2-socket S922 or H922, a 1-socket S914 and a 1 or 2-socket S924 or H924.  Need Linux only, you can choose any of the previously mentioned servers or choose the cost-optimized L922 with 1 or 2-sockets support 32 GB up to 4 TB of RAM.

IBM issued a Statement of Direction as part of a broader announcement the intention to offer AIX clients on the Power based Nutanix solution.  It is reasonable to conclude there will be a POWER9 based Nutanix option as well.  Expecting a POWER9 solution isn’t surprising but being able to run AIX in a non-PowerVM based hypervisor is a big deal.

Looking at the entire POWER portfolio available today for clients, it ranges from the POWER8 based hyper-converged Nutanix, mid-range & Enterprise class POWER8 systems which compliment the POWER9 Scale-out and speciality systems.

 

POWER_portfolio_Feb2018

Whether the solution will be Nutanix running AIX & Linux, an Enterprise server with 192 cores or a 1-socket L922 running PostgreSQL or MongoDB in a lab, businesses can  “have it your way”.

 

 

 

Upgrade to POWER9 – Never been easier!

Delivering more features & performance at a lower cost, the ease and options available to upgrade have never been more compelling.

With an outstanding family of products in IBM’s POWER8 portfolio, it seemed impossible for IBM to deliver a successor with more features, increased performance, greater value, while at a lower price point.  On February 13th, IBM announced the POWER9 Scale-out products supporting AIX, IBM i and Linux while 1st POWER9 announcement occurred December 5, 2017 with the AC922, a HPC & AI beast.

These newly announced PowerVM-based systems consist of 1 & 2 sockets systems supporting up to 4 TB of DDR4 memory.  Starting with the robust 1-socket S914 then accelerating to the 2RU 2-socket S922 and the 4RU 2-socket S924 system. IBM announced sister systems to the S-models purpose-built for SAP HANA.  These systems are the H822 & H824 systems, identical to the S822 & S824. The H-models might also be considered hybrid systems as they come bundled with key software used with HANA while allowing a smaller AIX and IBM i footprint – sort of a hybrid between a S & L model system.  There is also a Linux only model, just as there was with POWER8.  Called the L922, it is a 2-socket though available in a 1-socket configuration.  Each of these systems support up to 4 TB of memory except the S914 which supports up to 1 TB.

Why should businesses consider upgrading to POWER9? If they are running on POWER7 and older systems, Clients will save significant cost by lowering hardware and software maintenance cost.  Moreover, with the increased performance, clients will be able to consolidate more VM’s than ever and reduce enterprise software product licensing as well as its exorbinant maintenance cost.

While Intel cancels Knights Landing and struggles to deliver innovation and performance on their 10nm and 7nm platforms, remaining in a perpetual state of treading water at 14nm, what they are delivering seems to most benefit ISV’s and not businesses.

The traditional workloads such as Oracle, DB2, Websphere, SAP (ECC & HANA), Oracle EBS, Peoplesoft, JD Edwards, Infor, EPIC and more all benefit.  For businesses looking to develop and deploy technologies developed in the 21st Century, these purpose built products deliver new innovations ideally suited for workloads geared toward Cognitive (analytics) and the web. NoSQL products, such as Redis Labs, Cassandra, neo4j or Scylla to open source relational databases products like PostgreSQL or MariaDB.

With the increased performance and higher efficiencies, all software boats will rise running on POWER9.

My team of Architects and Engineers at Ciber Global are prepared to help migrate workloads from your POWER5, POWER6, POWER7 and even POWER8 systems running AIX 5.3, 6.1, 7.1 and 7.1 as well as IBM i v6.1, 7.1, 7.2 and 7.3 to POWER9.

POWER9 supports AIX 6.1, 7.1 and 7.2.  For IBM i, it supports 7.2 & 7.3.  Client systems not at these levels will have our consultants available to guide them on the requirements and their upgrade options.  Whether using Live Partition Mobility, aka the Easy Button to move workloads from POWER6, POWER7 or POWER8 systems to POWER9 or using more traditional methods such as AIX NIM or IBM i Full System Save/Restore, there is likely an approach meeting the businesses needs.

Rest assured, if you have doubts or concerns reach out to my team at Ciber to discuss. And if you don’t already have the Easy Button, IBM is offering a 60-day trial key for clients to upgrade the PowerVM Standard Edition licenses to Enterprise Edition on their P6, P7 or P8 systems making the upgrade to POWER9 not only financially easy but also technically easy.

 

HPE Memory RAS; Excels at being Average

A recent HPE blog stating memory errors are not the end of the world was meant to reassure clients to accept regular & unplanned platform disruptions. In reality what HPE ends up saying is there is little difference with the other commercial Intel server vendors and their own as they all range from below average to average at best.  Just so happens, this specific blog was written by the HPE Server Memory Product Manager who might be forgiven for painting this dire picture only to then present the best alternative; Yes, HPE SmartMemory. *shock*

To HPE’s credit, they have quite a bit of documentation discussing server Reliability, Availability & Serviceability (RAS) features, specifically about their memory subsystem. They are fairly forthright about their strengths and weaknesses of the entry, mid-range and high-end servers. Sadly though, at every level there message is full of qualifiers, limitations and restrictions which require the consumer to wade through and understand all of the requirements.

An HPE whitepaper from February 2016 titled “How memory RAS technologies can enhance the uptime of HPE ProLiant servers” paints a starkly different picture than the blog. The whitepaper states on page 2 in the 2nd paragraph of the introductory summary section “It might surprise you to know that memory device failures are far and away the most frequent type of failure for scale-up servers.“, up to 2X the rate of the next closest part when the memory is configured with a memory protection configuration not better than SDDC+1.  There is another graph that immediately follows this one showing when memory is configured using a protection scheme of DDDC+1 it decreases memory failures by 85%. That is pretty good, yet the value of 85% used in the whitepaper does not jive with the blog which states when using HPE SmartMemory, memory errors are reduced 99.9998% (yes, that is 5 x 9’s).  I call out this discrepancy because right after claiming 5×9’s they point the reader to the very whitepaper I am citing here.

This blog is not meant to define all of the different terms used, you will have to do some of that work. However, it is worth noting that all of the wonderful features touted in the HPE blog, in the HPE whitepaper and may other sources, the consumer will find there are many qualifiers, limitations and restrictions.  Such as.

  1. E5 chips do not support DDDC or DDDC+1
  2. E5 chips only support SDDC or SDDC + rank sparing
  3. Memory sparing consumes (wastes) either 25% or 12.5% of installed capacity
  4. EX chips support SDDC, SDDC + rank sparing, SDDC+1 and DDDC+1
  5. But, DDDC+1 is ONLY using x4 DIMMs and not x8 DIMMs
  6. DDDC+1 requires x4 DIMMs
  7. Advanced ECC is an option used across 2 DIMMs but can only fill 2 of 3 DIMM slots per channel
  8. Memory Mirroring is the most expensive in terms of cost & performance
  9. Memory Mirroring wastes 1/2 of the DIMM slots for the mirror – not usable
  10. Memory Mirroring only allows you to fill 2 of 3 DIMM slots per channel
  11. Memory Mirroring has a potential performance impact for WRITES

Let’s be clear, consumers have 3 primary options to configure memory on any of the Intel servers.

  1. Performance mode which delivers the highest bandwidth with the lowest reliability features. Not an ideal option for in-memory workloads despite the appeal to maximize the bandwidth.
  2. Lockstep Mode meant to strike a balance of slightly decreased bandwidth (can be up to 50%¹) while increasing reliability over performance mode.  Probably the most common option selected.
  3. Memory Mirroring Mode delivers the highest reliability at the expense of wasting 1/2 the memory capacity as well has a slight performance decrease (remember, this mode can only use 2 of the 3 DIMM slots per channel so you already lose 1/3 of the memory capacity).

What is HPE’s response to clients who want increased memory RAS; especially for those in-memory workloads such as SAP HANA?  Buy more expensive E7 based servers to receive slightly higher memory RAS capability OR install more memory on the already RAS-deficient E5 based servers to increase its capacity to utilize memory spare ranks.

Net-net is that HPE is pushing proprietary memory that is far more expensive than the industry standard memory traditionally used with Intel servers that has earned it the reputation as a low-cost leader relative to traditional Enterprise-class systems like IBM POWER or SPARC. That is evident in the SAP HANA space as the systems required to support these in-memory workloads tend to require more capacity; more cores to achieve the core to memory ratio’s and more sockets to achieve more memory capacity with its associated bandwidth.  Yet, HPE remains true to form as regardless of the path taken, it comes with increased cost, limitations, restrictions and qualifications.

Contrast the never-ending “Compromise” Intel options, IBM’s POWER8 servers use Enterprise memory that is “No Compromise”.  This buffered memory offers spare  capacity, spare lanes, memory instruction replay, chipkill and an incredible DDDC +1+1 allowing for multiple DRAM failures before experiencing a system event.  The design point for POWER8 memory is simple: Not to fail!

AS you consider platforms to host in-memory workloads such as SAP HANA, DB2 BLU, consider which basket you want to place all of your eggs into.  A platform with a memory subsystem designed not to fail or a platform with unending limitations as listed above. The choice should be easy – Choose POWER!

 

SAP HANA – could I have extra complexity please?

Just returned from IBM’s Systems Technical University conference held in Orlando having delivered presentations on 4 different topics.

  1. Benefits of SAP HANA on POWER vs Intel
  2. Why IBM POWER systems are datacenter leaders
  3. Only platform that controls Software Licensing
  4. Why DB2 beats Oracle on POWER (implied that it beats Intel).

With the SAP Sapphire conference last week in Orlando, there was a slew of announcements.  Quick reminder for the uninitiated with SAP HANA, that it is ONLY supported on Intel and POWER based systems running one OS; SUSE or RedHat Linux. With that, IBM POWER continues to deliver the best value.

What is the value offered with the POWER stack? Flexibility! It really is that simple.  If I had a mic on the plane as I write this, I would drop it. Conversely, what is the value offered going with an Intel stack? Compromise!

Some of the flexibility offered thru IBM POWER systems are: Scale-up, scale-out, complete virtualization, grow, shrink, move, perform concurrent maintenance, mix workloads: existing ECC workloads on AIX or IBM i with new HANA running Linux all on the same server.  All of this runs using the most resilient HANA platform available.

Why do I label Intel systems as “Compromise” solutions? It isn’t a competitive shot nor FUD.  Listen, as an Client Executive and Executive Architect for an Channel Reseller, I am able to offer my clients solutions from multiple vendors that include IBM POWER and Intel based systems manufacturers.  I’ve made the conscious decision though to promote IBM POWER over Intel.  Why? Because I not only believe in the capabilities of the platform but also having worked with some of the largest companies in the world, I regularly hear and see the impact running Enterprise workloads on Intel based servers has on the business.

If you read my previous blog, I mention a client who just recently moved their Oracle workloads from POWER to Intel.  Within months, they’ve had to buy over $5M in new licenses going from a simple standalone and a few 2-node clusters (all on the same servers) to an 8-node VMware based Oracle RAC cluster.  This environment is having daily stability issues significantly impacting their business.  Yes, their decision to standardize on a single platform has introduced complexity to the business costing them money, resources (exhausted & not having the proper skills to manage the complexity) that impacts their end-users.

The “Compromise” I mention to host SAP HANA on Intel is that everything has to be an asterisk by it – in other words a limitation or restriction – everything requires follow-up questions and research to ensure what the business wants to do, can be done. Here are some examples.
1) VMware vSphere 5.5 initially supported 1 VM per system which has now been increased to 4 VM’s, but with many qualifications.
a) Restricted to 2 & 4 socket Intel servers
1) VM’s are limited to a socket
2) 2 socket server ONLY supports 2 VM’s, 4 socket would be 4 x 1 sockets each
b) Only E5_v2, E5_v3, E7_v2 and E7_v3 chips are supported – NO Broadwell
c) Want to redeploy capacity for other? Appliances certified only for SoH or S4H
uses cannot be used for other purposes such as BW
d) Did I mention, those VM’s are also limited to 64 vCPU and 1 TB of memory each
e) If a VM needs more memory than what is attached to that socket? No problem, you have to add an additional socket and all of its memory – no sharing!
2) VMware vSphere 6.0 just recently went from 1 to 16 VM’s per system.
a) VM’s are still limited to a socket or 1/2 socket.
b) 1/2 socket isn’t as amazing as it sounds.  Since vSphere supports 2, 4 & 8 socket servers, there can be 16 x 1/2 socket VM’s.
c) What there cannot be, is any combination of VM’s >1 socket with 1/2 socket assigned. In other words, a VM cannot have 1.5 or 3.5 sockets. Any VM resource requirement above 1 socket requires the addition of an entire socket.  1.5 sockets would be 2 sockets.
d) Multi-node setups are NOT permitted …. at all!
e) VM’s larger than 2 sockets cannot use Ivy Bridge based systems, only Haswell or Broadwell chips – but ONLY on 4-socket servers.  Oh my gosh, this is making my head hurt!
f) If using an 8-socket system, it only supports a single production VM using Haswell ONLY processors.  NOT Ivy Bridge and NOT Broadwell!
g) VM’s are limited to 128 vCPU and 4 TB of memory
3) VMware vSphere 6.5 with SAP HANA SPS 12 only supports Intel Broadwell based systems. What if your HANA Appliance is based on Ivy-Bridge or Haswell processor technology? “Where is that Intel rep’s business card? Guess I’ll have to buy another one since I can’t upgrade these”
a) VM’s using >4 sockets are currently NOT supported with these Broadwell chips
b) Now, it gets better. I hope you are writing this down – For 2 OR 8 socket systems, the maximum VM size is 2 sockets.  Only a 4 socket system supports 1 VM with 4 sockets.
c) Same 1/2 socket restrictions as vSphere 6.0.
d) Servers with >8 sockets do NOT permit the use of VMware
e) If your VM requirements exceed 128 vCPU and 4 TB of memory, you must move it to a bare-metal system ….. Call me – I’ll put you on a POWER system where you can scale-up, scale-out without of this mess

Contrast all of these VMware + Intel limitations, restrictions, liabilities, qualification or simply said “Compromise” systems to the IBM Power System.

POWER8 servers run the POWER Hypervisor called PowerVM.  This Hypervisor and its suite of features deliver flexibility allowing all physical, all virtual and a combination of physical & virtual resource usage on each system. Even where there are VM limits such as 4 on the low-end system, that 4 could really be 423 VM’s.  I’m making a theoretical statement here to prove the point. Let’s use a 2 socket 24 core S824 server.  3 VM’s, each with 1 core (yes, I said core) for production usage and the 4th VM’s is really a Shared Processor Pool with 21 cores.  Those 21 cores support up to 20 VM’s per core or 420 VM’s. Any non-production use is permitted.

Each PowerVM VM supports up to 16 TB of memory and 144 cores.  VM size above 108 cores requires the use of SMT4 whereas <=108 cores permit SMT8.  Thus, 144 cores with SMT4 is 576 vCPU’s or 4.5X what Intel can do with 4X the memory footprint.  By the way, that 108 core VM would support 864 vCPU’s – just saying!  Note: I need to verify as the largest SMT8 VM may be 96 cores with only 768 vCPU.

Not only can we allocate physical cores to VM’s and NOT limited to 1/2 or full socket increments like Intel, but POWER systems granularity allows for adjustments at the vCPU level.

PowerVM supports scale-out and scale-up.  Then again, if you have heard or read about the Pfizer story for scale-out BW, you might rethink a literal scale-out approach. Read IBM’s Alfred Freudenberger’s blog on this subject at https://saponpower.wordpress.com/2016/05/26/update-sap-hana-support-for-vmware-ibm-power-systems-and-new-customer-testimonials/

While on the subject of BWoH/B4H, PowerVM supports 6 TB per VM whereas the vSphere 6.0 supports is 3 TB and the limitations increase from here.

Do you see why I choose to promote IBM Power vs Intel? When I walk into a client, the most valuable item I bring with me is my credibility.  HANA on Intel is a constant train wreck with constant changes & gotcha’s. Clients currently with HANA on Intel solutions or better yet, running ECC on Intel have options.  That option is to move to a HANA 2.0 environment using SUSE 12 or RedHat v7 Linux on POWER servers. Each server will host multiple VM’s with greater resiliency providing the business the flexibility desired from the critical business system that likely touches every part of the business.