Not on the Dell/EMC Bandwagon. More of the same. OpenPOWER changes the game!

Reading articles about the two companies consummation on 9/7/16 around social media yesterday, one would think the marriage included a new product or solution which was revolutionizing the industry.  I haven’t heard of any but  I do know that both companies have continued to shed employee’s and sell off assets not core to the go-forward business to capture critical capital to fund the massive $63B deal.  They will also continue to evaluate products from both Dell & EMC’s traditional product portfolios to phase out, merge, sell or kill due to redundancies and other reasons.  It just happens. For them to say otherwise is misleading at best.  Frankly, it hurts their credibility when they deny this as there are examples already of this occurring.

Going forward I do not see how the combined products of Dell, which at its core sell commodity Intel servers that are not even best of breed, but rather the low-cost leader paired with the high-end products from EMC, which had high development cost will be any different on 9/8/16 than it was on 9/6/16.  EMC’s problem of customers moving away from the high margin high-end storage systems to the highly competitive, lower margin All Flash Array products will not be any better for the newly combined company.  This AFA space has many good competitors who offer “Good Enough” features that can offer clients 1) Lower cost 2) Comparable or better features 3) Not a tier-1 player who some customers resist due to feeling they overpay for the privilege to work with them.

About 2 years ago, EMC absorbed VCE with its Converged infrastructure called vBlock, a term I argue it is not but instead is a Integrated Infrastructure built on VMware, Cisco UCS and EMC Storage.  VMware & EMC storage offer nothing unique. UCS is unique in the Intel space but with the messy split from the VCE tri-union and now VCE who is placing a lot of emphasis on their own hyper-converged offerings as well as products from Dell due to this new found marriage.  It only makes sense to de-emphasize Cisco from a VCE solution and start promoting Dell products.  This goes from using the leader in Intel blade solutions to the “me-too” Dell products which is average in a field of “Good Enough” technology whose most notable feature is its low cost.

As I listen to the IBM announcement today that include 3 new OpenPOWER servers I can’t help but wonder how much longer Dell’s low cost advantage will remain.  Not sure what they will use for SAP HANA workloads requiring > 4 socket Intel servers since HPE just bought SGI, primarily for its 32 socket Intel server/technology.  I guess they could partner with Lenovo on their x3950 or with Cisco on their C880 which I believe they actually OEM from Hitachi. Dell servers are woefully inadequate with regard to RAS features; not just against POWER servers but even against other Intel competitors like Lenovo (thanks to their IBM purchase of xSeries), Hitachi and Fujitsu who all have stronger offerings relative to what Dell offers.   RAS features simply cost more which is why you didn’t see IBM with its xSeries, Hitachi or Fujitsu be volume leaders. This is also why you are seeing more software defined solutions built to mask hardware deficiencies. This in itself has its own problems.

Here is a quick review of today’s announcements. The first server is a 2 socket 2U server built for Big Data hosting 12 internal front facing drive slots.  The next server is a 2 socket 1U server offering almost 7K threads in a 42U rack.  It provides tremendous performance for clients looking for data-rich and dense computing.  The 3rd server is a 2 socket 2U server that is the first commercial system to offer NVIDIA‘s NVLink technology connecting 2 or 4 GPU’s directly to each other as well as to the CPU’s.  Every connection is 160 GB/s bi-directional which is roughly 5X what is available on Intel servers using GPU’s connected to PCIe3 adapter slots.

openpower_family_sept2016

These OpenPOWER systems allow clients to build their own solution or as part of a integrated product with storage and management stack built on OpenStack.  Ideal for Big Data, Analytics, HPC, Cloud, DevOps and open source workloads like SugarCRM, NoSQL, MariaDB, PostgreSQL (I like EnterpriseDB for support) or even IBM’s vast software portfolio such as DB2 v11.1.

Pricing for the 3 new OpenPOWER models as well as the first 2 announced earlier in the year is available at Scale-out Linux on page. I recently did a pricing comparison for a customer with several 2 socket Dell servers vs a comparable 2 socket S822LC.  Both the list and web price for the Dell solution were more expensive than OpenPOWER.  The Dell list price was approximately 35% more and the web list price was 10% more and I was using the price as shown on the IBM OpenPOWER page provided in the link in this same paragraph.  Clients looking to deploy large clusters, compute farms or simply want to start lowering infrastructure cost should take a hard look at OpenPOWER.  If you can install Linux on an Intel server,  you have the skills to manage a OpenPOWER server.  Rocket Scientist need not apply!

If you have questions, encourage you to contact your local or favorite business partner.  If you do not have one, I would be happy to work with you.

HPE; there you go again! Part 2

Update on Sept 05, 2016: I split-up the original blog (Part 1) into two to allow for easier reading.

The topic that started the discussion is a blog by Jeff Kyle, HPE Director of Mission Critical Systems promoting his Superdome X server at the expense, using straw men and simply factually incorrect information to base his arguments on.

Now it’s my turn to respond to all of  Jeff’s FUD.

  • Let’s start with this. My favorite topic right now which is to finally have an acknowledgement that Intel customers using VMware running Oracle Enterprise Edition Software products licensed by core have a problem.
    • VCE President, Chad Sakac pens his open letter to Larry at Oracle to take his jackboot off the necks of his VMware people.
    • Read my blog response
  • VMware’s Oracle problem is this. Oracle’s position is essentially if customers are running any Oracle Enterprise product licensed by core on a server running VMware, managed by vCenter then ALL (yes, ALL) servers in the cluster that are under that vCenter manager environment, should and MUST be licensed for ALL of the Oracle products running on that one server. Preposterous or not,  it is not my fight. Obviously, VMware & Intel server vendors who are having their sales impacted by this are not happy. Oracle, which offers an x86 alternative in the form of Exadata and Oracle Database Appliance offer their own virtualization capabilities that is NOT VMware based and which clients do NOT have to license all of the cores, only those being used.
  • VCE & House of Bricks, via a VCE sponsored whitepaper are encouraging customers to stand up to Oracle during contract negotiations, audits and in general to take the position that your business will only pay for the cores and thus the licenses with which are running Oracle Enterprise products. Of course, VCE, nor HoB nor any other Intel vendor that I have read about is providing any indemnification to customers who stand up to Oracle, found out of compliant with fines, penalties and fee’s.  They have the choice to pay up or fight in court.  Yes, it’s the right thing to do but keep in mind that Oracle is a company predisposed to litigate.
  • Yes, I agree that Software licensing & maintenance costs are one of the largest cost items to a business. Far higher than infrastructure, yet Intel vendors wouldn’t have you believe that.
  • IBM Power servers have several “forward looking Cloud deployment” technologies
    • Open source products like PowerVC built on OpenStack manages an enterprise wide Power environment that integrates into a customer’s OpenStack environment.
    • IBM Cloud PowerVC Manager, also built on OpenStack provides clients with enterprise wide private cloud capabilities.
    • Both PowerVC and Cloud PowerVC Manager integrate with VMware’s vRealize allowing vCenter to manage a Power environment.
    • If that isn’t enough, using IBM Cloud Orchestrator, clients can manage a heterogeneous compute & storage platform, both on-prem, hybrid or exclusively in the cloud.
    • IBM will announce additional capabilities on September 8, 2016 that deliver more features to Power environments.
  • “Proprietary chips” – so boring. What does that mean?
    • Let’s look at Intel as they continue to close their own ecosystem. They bought an FPGA company with plans to integrate it into their silicon. Instead of working with GPU partners like NVIDIA & AMD, they developed their own GPU offering called Knights Landing.  Long ago they integrated Ethernet controllers into their chips, and depending on the chip model, graphics capability. They build SSD’s, attempted to build mobile processors and my last example of them closing their ecosystem is Intel’s effort to build their own hi-speed, low latency communication transport called OmniPath instead of working with hi-speed Ethernet & InfiniBand partners like Mellanox.  Of course, unlike Mellanox which provide offload processing capabilities on their adapters, true to form Intel’s OmniPath does not thus requiring them to use the main processing cores to service the hi-speed ethernet traffic.  Wow, that should be some unpredictable utilization and increased core consumption…..which simply drives more servers and more licenses.
    • Now let’s look at what Power is doing. IBM has opened up the Power Architecture specification to the OpenPOWER Foundation. Power.org is still the governing body but OpenPOWER is designed to encourage development & collaboration under a liberal license to build a broad ecosystem.  Unlike Intel which is excluding more and more partners, OpenPOWER has partner companies building Power chips, systems, not to mention peripherals and software.
    • I’ll spare you from looking up the definition of Open & Proprietary as I think it is clear who is really open and who is proprietary.
  • Here is how the typical Intel “used car” salesman sells Oracle on x86: “Hey Steve, did you know that Oracle has a licensing factor of .5 on Intel while Power is 1.0? Yep, Power is twice as much. You know that means you will pay twice as much for your Oracle licenses! Hey, let’s go get a beer!”
    • What Jeff is forgetting to tell you or simply does not know is that except for this unique example with Pella with Oracle running on a Superdome X server because of its nPAR capability, as most customers do not run Oracle on the larger Intel servers like that which may offer a hardware partitioning feature which allows for reduced licensing. They typically run it on 2 or 4 socket servers.
    • The Superdome X server supports two types of partitioning that were carry overs from the original Superdome (Itanium) servers. vPARs and nPARs are both considered Hard Partitioning and thus, both allow the system to be configured into smaller groups of resources.  This allows only those cores to be licensed, then adhering to Oracle licensing rules.
    • HPE provides the Pella case study which states they have a 40 core partition separated from other cores on the server using nPAR technology that appears like server although made up of 2 blades. nPAR’s separate resources along “cell board” boundaries, which are the equivalent of an entire 2 socket blade.  Pella’s Primary Oracle environment runs with 2 blades, each with 2 x 1o cores totaling 40 cores. These two production blades with 40 cores & 20 Oracle licenses sit alongside 2 other blades in one data center while at the failover site sits another HP SD-X chassis. I wonder if Pella realizes the inefficiency of the Superdome X solution. Every Intel server has a compromise. Traditional Scale-out 1 & 2 socket servers have compromises with scalability, performance & RAS. Traditional Scale-up 4 socket & larger Intel servers have compromises with scalability, performance and RAS as well.  Each Superdome X blade has a Xbar controller plus the SX3000 Fabric bus. For this 4 socket NUMA server to act like one server, it will require 8 hops for every off-blade remote memory access.  Further, if the 2nd blade isn’t in the same slot number scheme, such as blade 1 in slot 1 and blade 2 in slot 3, then performance would be further degraded. Do you see what I mean by Intel servers having land mines with every step?
    • The Pella case study says the failover database server uses a single blade consisting of 30 cores.  Not sure how they are doing that if they are using E7_v3 or E7_v4 processors as there is not a 15 core option.  There is a E7_v2 (Ivy Bridge) 15 core option but doubt they would use it.  This single Oracle DB failover blade sits with additional 2 blades.  The fewest Oracle licenses you could pay for on the combined 4 socket or 40 core blade, assuming it is using 2 x 10 core chips per blade is 20 Oracle Licenses.  So, even if the workload ONLY requires 8, 12, 16 or 18 cores the customer would still pay for 20 Licenses.
    • This so-called $200,000 in Oracle licensing savings really is nothing, it really isn’t.  I just showed a customer running Oracle EBS with Linux on Dell how they would save $2.5M per year in Oracle maintenance cost if they moved the workload to AIX on POWER8.  If they would have deployed the solution on AIX to begin with, factoring in the 5 year TCO difference for what they are paying with Intel compared to POWER, this customer would have avoided spending $21M – let that sink in.
    • I do not intend to be disrespectful to Pella, but if you would have put the Oracle workloads running on the older HP SuperDome  onto POWER8 in 2015, you would not have bought a single Oracle license. I could guaranteed that you would have given licenses back, if desired. Not only would you avoid buying licenses, after returning licenses, you would save the 22% maintenance for each returned license.
    • Look at one of my old blogs where I give some Oracle Licensing examples comparing licensing costs for Intel vs Power. It is typical for what I regularly see with clients, if not even greater consolidation ratio’s and subsequent license reductions results.
    • The Pella case study does not mention if the new Superdome X solution uses any virtualization technology.  I can only assume it does not since it was not mentioned.  With IBM Power servers running AIX, all POWER servers come with virtualization (note I said “running AIX”).  With Power, the customer could add/remove cores & memory. They could add & remove I/O to any LPAR (LPAR = VM) while doing concurrent maintenance on the I/O path out-of-band via dual VIOS, move that VM from one server to another live…maybe it is only used when upgrading to the next generation of server …. you know, POWER9; the next generation that would deliver to Pella even more performance per core, allowing them to return more Oracle licenses, saving even more money.
  • This comes back to the “Granddaddy” statement Jeff made. Power servers have a license factor of 1.0 but with POWER server technology, customers ONLY license the cores used by Oracle. You can create dedicated VM’s where you only license those cores regardless of how many are in the server. Another option is to create a shared processor pool (SPP) and without going into all of the permutations, let’s simply say you ONLY license the cores used in the pool not to exceed the # of cores in the SPP.  However, what is different from the dedicated VM is that within the SPP, there could be 1 – N VM’s sharing those cores and thus sharing the Oracle licenses.
  • I did some analysis that I also use with my SAP HANA on POWER discussion where I show processor performance by core has increased each generation starting with POWER 5 all the way to POWER8. With POWER9 details just discussed at Hot Chips 2016 earlier this month (August), we can now expect it to deliver a healthy increase over POWER8 as well.  Thus, P5 to P5+ saw an increase in per core performance. P5+ to P6 to P6+ to P7 to P7+ to P8 all saw successive increases in per core performance. Contrast that to Intel and reference a recent blog I wrote titled “Intel, the Great Charade”.  Look at the first generation Nehalem called Gainestown which delivered a per core performance rating (as provided by Intel ) of .29. The next release was Westmere with a rating of .33. After that was Sandy Bride at .32 followed by Ivy Bridge at .31 then Haswell at .29 and the latest per core performance rating of .29.  What does this mean? In 2016, the per core performance is the same as it was for a processor in the 2007 timeframe. Yes, they have more cores per socket – but I’ll ask you; how are you paying for your Oracle, by core or by socket?
  • Next, IBM Power servers that run AIX, which is what would primarily run Oracle Enterprise Edition Database, run on servers with PowerVM which is the software suite that exploits Power Hypervisor. This is highly efficient and reliable firmware.  Part of this efficiency is how it shares and thus dispatches unused processor cycles between VM’s not to mention the availability of 8 hardware threads per core, clock speeds up to 4.5 GHz, At least 2X greater L1 & L2 caches. 3.5X greater L3 cache and 100% more L4 cache over Intel.  What does this mean? What it means is that Power does more than just beat Intel by 2X.  That is what I call a “foot race”.   When you factor in the virtualization efficiency you start to get processing efficiencies approaching 5:1, 10:1, even higher.
  • I like to tell the story of a customer I had running Oracle EBS across two sites. It had additional Oracle products: RAC and WebLogic but this example will focus just on Location 1 and on Oracle Enterprise Edition Database.  Customer was evaluating a Cisco UCS that was part of a vBlock, an Oracle Exadata and a IBM POWER7+ server. I’ll exclude Exadata, again because of some complexities it has with licensing where it skews the results against other Intel servers, just know the POWER7+ solution kicked its ass.  With the vBlock, a VCE engineer sized the server & core requirements for the 2 site solution.  Looking just at Location 1 for Oracle Enterprise Edition DB, the VCE engineer determined 300 Intel cores were required for Oracle EE DB.  All of these workloads required varying degrees of cores; 7 cores in one server rounded up to 10.  Another server required 4 cores that was rounded up to 6 or maybe 8 cores. Repeat this for dozens of workloads.  Just to reiterate that VCE did the sizing as I did the POWER7+ sizing independent from VCE, completing mine first for that matter.  My sizing demonstrated only 30 x POWER7+ cores.  That was 300 Intel cores or 150 Oracle Licenses compared to 30 x POWER cores or 30 Oracle Licenses.  If my memory serves me correctly, the hard core requirement for the Intel workload on the vBlock was around 168 cores which still would have been 84 Oracle Licenses.  This customer was receiving a 75% discount from Oracle and even with this the difference in licensing cost (Oracle EE DB, RAC & WebLogic for 2 sites) was somewhere around $10-12M.  Factor in the 22% annual maintenance and the 5 year TCO for the Intel solution ONLY for the Oracle software was around $20M vs $5-6M on POWER.  By the way, the hardware solution cost differences were relatively close in price; within several $100K.

I know we are discussing Oracle on Intel but wanted to share this SAP 2-tier S&D performance comparison between 4, 8 and 16 socket Intel servers’ vs 2 & 8 socket POWER8 servers.  I use this benchmark as I find it is one of the more reliable system wide test.  Many of the benchmarks are focused in specific areas such as floating point or integer but not transactional data involving compute, memory movement and active I/O.

SAP2tier_compare

Note in the results the 4 socket Haswell server outperform the newer Broadwell 4 socket server. Next, notice the 8 socket Haswell server outperform the newer 8 socket Broadwell 8 socket server. Lastly, notice the 2 x 16 core results, both which are on a HP Superdome X server.  Using the SAP benchmark measurement of SAPS, it shows the lowest amount of SAPS per core compared to any of the Intel servers shown. Actually, do you notice another pattern? The 4 sockets show greater efficiency over the 8 socket servers which show greater efficiency over the 16 socket servers.

Contrast that to the 2 socket POWER8 server, which by the way is 2X the best Intel result.  If the trend we just reviewed with the Intel servers above holds true, we would expect the 8 socket POWER8 result to show fewer SAPS per core than the 2 socket POWER8 server. We already know the answer because it was highlighted in green as it was the highest result that was roughly 13% greater than the 2 socket POWER8.   The 8 socket POWER8 was also 2.X+ greater than any of the Intel servers and 2.8X greater than the 16 socket HP Superdome X servers specifically.

Here comes my close – let’s see if I do a better job than Jeff!

  • My last point is this in response to Jeff’s statement that “There’s a compelling alternative. A “scale-up” (high capacity) x86 architecture with a large memory capacity for in-memory compute models can dramatically improve database performance and lower TCO.”
    • I’ve already debunked the myth and simply false statements that running Oracle on POWER costs more than Intel. In fact, it is just the opposite, and by a significant amount.
    • Also, as shown in the HPE whitepaper “How memory RAS technologies can enhance the uptime of HPE ProLiant servers” they state “It might surprise you to know that memory device failures are far and away the most frequent type of failure for scale-up servers.”. It is amazing how HPE talks out of both sides of their mouth.  Memory fails the most of any component in HPE servers yet they suggest you to buy these large scale-up servers that hold more memory, host and run more workloads such as “in-memory”  from  SAP HANA, Oracle 12c In-Memory or DB2 with BLU Acceleration.  While in their own publishing’s they acknowledge it is the part most likely to fail in their solution.
    • UPDATE: There is a better alternative to HPE Superdome X, Scale-up, Scale-out or any other Intel based server.  That alternative has higher processor performance, larger memory bandwidth, a (much) more reliable memory subsystem as well as overall system RAS capabilities with a full suite of virtualization abilities. That alternative is an IBM Server, specifically POWER8 available in open source 1 & 2 socket configurations (look at LC models), scale-out 1 & 2 models & here (look a L models) and scale-up 4 – 16 socket Enterprise models.  I’ll discuss more about HPE & IBM’s memory features in my next blog.

Your Honor, members of the jury, these are the facts as presented to you.  I leave it to you  to come back with the correct decision – Jeff Kyle and HPE are guilty of misleading customers and propagating untruths about IBM POWER.

Case closed!

 

HPE; there you go again! Part 1

Updated Sept 05, 2016: Split the blog into 2 parts (Part 2). Fixed several typo’s and sentence structure problems. Updated the description of the Superdome X blades to indicate they are 2 socket blades while using Intel E7 chips.

It must be the season as I find myself focused a bit on HPE.  Maybe it’s because they seem to be looking for their identity as they now consider selling their software business.  This time though, it is self-inflicted as there has been a series of conflicting marketing actions. From what they say in their recent HPE RAS whitepaper about the poor Intel server memory reliability stating in the introductory section that memory is far and away the highest source of component failures in a system.  Shortly after that RAS paper is released, they post a blog written by the HPE Server Memory Product Manager stating “Memory Errors aren’t the end of the World”.  Tell that to the SAP HANA and Oracle Database customers, the latter which I will be discussing in this blog.

HPE dares to step into the lion’s den on a topic with which it has little standing to imply it is an authority how Oracle Enterprise software products are licensing in IBM Power servers.  As a matter of fact, thanks to the President of VCE, Chad Sakac for acknowledging that VMware has a Oracle problem.  On August 17th, Chad penned what amounts to an open letter to Larry & Oracle begging them …. No, demanding that Larry leave his people alone.  And, by “his people”, I mean customers who run Oracle Enterprise Software Products licensed by the core on Intel servers using VMware.

Enter HPE with a recent blog by Jeff Kyle, Director of Mission Critical Solutions.  He doesn’t distinguish if he is in a product development, marketing or sales role.  I would bet he it is the latter two as I do not think a product developer would put themselves out like Jeff just did.  What he did is what all Intel marketing teams and sellers have done from the beginning of compute time when the first customer thought of running Oracle on a server that wasn’t “Big Iron”.

Jeff sets up a straw man stating “software licensing and support being one of the top cost items in any data center” followed by the obligatory claim that moving it to an “advanced” yet “industry-standard x86 servers” will deliver the ROI to achieve the goals of every customer while coming damn close to solving world hunger.

Next is where he enters the world of FUD while also stepping into the land of make-believe.  Yes, Jeff is talking about IBM Power technology as if it is treated by Oracle for licensing purposes the same as an Intel server, which it is not.  You will have to judge if he did this on purpose or simply out of ignorance.  He does throw the UNIX platforms a bone by saying they have “excellent stability and performance” but stops there as only to claim they cost more than their Industry standard x86 server counterparts.

He goes on to state UNIX servers <Hold Please> Attention: For purposes of this discussion, let’s go with the definition that future UNIX references = AIX and RISC references = IBM POWER unless otherwise stated.  As I was saying, Jeff next claims AIX & POWER are not well positioned for forward-looking Cloud deployments continuing his diminutive descriptors suggesting proper clients wouldn’t want to work with “proprietary RISC chips like IBM Power”. But, the granddaddy of all of his statements and the one that is complete disingenuous is:  <low monotone voice> “The Oracle license charge per CPU core for IBM Power is twice (2X) the amount charged for Intel x86 servers” </low monotone voice>.

In his next paragraph, he uses some sleight of hand by altering the presentation of the traditional full List Price cost for Oracle RAC that is associated with Oracle Enterprise Edition Database.  Oracle EE DB is $47,500 per license + 22% maintenance per year, starting with year 1.  Oracle RAC for Oracle EE EB is $23,000 per license + 22% maintenance per year, starting with year 1.  If you have Oracle RAC then you would by definition also have a corresponding Oracle EE DB Licenses.  The author uses a price of $11,500 per x86 CPU core and although by doing he isn’t wrong per se, I just do not like that he does not disclose the full license cost of #23,000 up front as it looks like he is trying to minimize the cost of Oracle on x86.

A quick licensing review. Oracle has an Oracle License Factor Table for different platforms to determine how to license its products that are licensed by core. Most modern Intel servers are 0.5 per License.  IBM Power is 1.0 per License.  HP Itanium 95XX chip based servers, so you know also has a license factor of 1.0.  Oracle, since they own the table and the software in question can manipulate it to favor their own platforms as they do, especially with the SPARC servers.  It ranges from 0.25 to 0.75 while Oracle’s Intel servers are consistent with the other Intel servers at 0.5.  Let’s exclude the Oracle Intel servers for purposes of what I am talking about here for reason I said, which is they manipulate the situation to favor themselves. All other Intel servers “MUST” license ALL cores in the server with very, very limited exceptions “times” the licensing factor which is 0.5.  Thus, a 2 x 18 core socket would have 36 cores. Ex: 2s x 18c = 36c x 0.5 License Factor = 18 Licenses.  That would equal 18 Oracle Licenses for whatever the product being used.

What Jeff does next was a bit surprising to me.  He suggests customers not bother with 1 & 2 socket Intel “Scale-out” servers which generally rely on Intel E5 aka EP chipsets.  By the way, Oracle with their Exadata & Oracle Database Appliances now ONLY use 2 socket servers with the E5 processors; let that sink in as to why.  The EP chips tend to have features that on paper have less performance such as less memory bandwidth & fewer cores while other features such as clock frequency are higher, a feature that is good for Oracle DB.   These chips also have lower RAS capabilities, such as missing the MCA (Machine Check Architecture) feature only found in the E7 chips.  He instead suggests clients look at “scale-up” servers which commonly classified as 4 sockets and larger systems.  This is where I need to clarify a few things.  The HP Superdome X system, although it scales to 16 sockets, does so using 2 socket blades.  Each socket uses the Intel E7 processor, which given this is a 2 socket blade is counter to what I described at the beginning of this paragraph where 1 & 2 socket servers used E5 processors.  The design of the HP SD-X is meant to scale from 1 blade to 8 blades or 2 to 16 sockets which requires the E7 processor.

With the latest Intel Broadwell EX or E7 chipsets, the number of cores available for the HD SD-X range from 4 to 24 cores per socket.  Configuring a blades with the 24 core E7_v4 (v4 indicates Broadwell) equals 48 cores or 24 Oracle Licenses.  Reference the discussion two paragraphs above.  His assertion is by moving to a larger server you get a larger memory capacity for those “in-memory compute models” and it is this combination that will dramatically improve your database performance while lowering your overall Total Cost of Ownership (TCO).

He uses a customer success story for Pella (windows) who avoided $200,000 in Oracle licensing fees after moving off a UNIX (not AIX in this case) platform to 2 x HPE Superdome X servers running Linux.  This HPE customer case study says the UNIX platform which Pella moved off 9 years ago was actually a HP Superdome with Intel Itanium processors server running HP-UX.  Did you get this? HP migrated off their own 9-year-old server while implying it might be from a competitor – maybe even AIX on Power since it was referenced earlier in the story.  That circa 2006 era Itanium may have used a Montecito class processor. All of the early models before Tukwila were pigs, in my estimation.  A lot of bluff and hyperbole but rarely delivering on the claims.  That era of SD would have also used an Oracle license factor of 0.5 as Oracle didn’t change it until 2010 and only on the newer 95xx series chips.  Older systems were grandfathered and as I recall as long as they didn’t add new licenses they would remain under the 0.5 license model.  I would expect a 2014/2015 era Intel processor would outperform a 2006 era chip, although if it would have been against a POWER5 1.9 or 2.2 GHz chip I might call it 50-50 J .

We have to spend some time discussing HP server technology as Jeff is doing some major league sleight of hand as the Superdome X server supports a special hardware partitioning capability (more details below) that DOES allow for reduced licensing that IS NOT available on non-Superdome x86 servers or from most other Intel vendors unless they also have an 8 socket or larger system like SGI – oh wait, HP just bought them.  Huh, wonder why they did this if the HPE Superdome X is so good.

Jeff then mentions an IDC research study; big deal, here is a note from my Pastor that says the HPE Superdome is not very good; who are you going to believe?

Moving the rest of the blog to Part 2.

 

 

Linux on POWER8 / OpenPOWER Resources

Updated 09/06/2016: Corrected a mix-up in links associated with MariaDB & DB2. Added SugarCRM.

Thought I would put together a recent collection of Linux on POWER resources I collected.  There is a bit of rhyme & reason to it but not in any particular order.  Also, keep in mind a few of the links are perishable, meaning when you finally get to reading this blog it may be well after the link or offer is valid.

I have another LoP resource document I use with about 2-3X more content but it is in a different format.  If I have time, I’ll try to put it in the active bullet link format used below.

 

  1. What Open Source Community Software solutions are available for Linux running on IBM Power Systems?
  2. Linux on Power open source application portfolio
  3. Open Source POWER Availability Tool
  4. IBM Linux on Power Software – Mongodb, Nodejs, V8, Hadoop, Cassandra, etc
  5. Docker for Linux on Power Systems
  6. Turbo LAMP as a high performance LAMP stack
  7. Eclipse based engine for ppc64el programming
  8. How to do netboot on PowerVM
  9. Network name change (Ubuntu 16.04 and later)
  10. Missing legacy ethX interfaces names
  11. IBM Data Engine for NoSQL
  12. Neo4j Datasheet on POWER8
  13. RedisLabs       IBM Systems blog on RedisLabs
  14. MongoDB    1      2      3   
  15. Cassandra
  16. MariaDB     1M+ Queries/sec      1         
  17. EnterpriseDB (PostgreSQL)      1   
  18. IBM DB2 LUW v11.1     1
  19. IBM Advanced Toolchain (ATC) for PowerLinux Documentation
  20. POWER8 vs Intel Scalability test using PostgreSQL 9.6beta2
  21. Extra Packages for Enterprise Linux (EPEL)
  22. Hardware for evaluating, developing, porting, migrating, modernizing, optimizing, demonstrating, maintaining, and marketing
  23. Technical Information: SUSE Linux Enterprise Server
  24. openSUSE wiki
  25. Red Hat Enterprise Linux
  26. Ubuntu for IBM POWER8
  27. Ubuntu at Launchpad
  28. Ubuntu PowerPC 64-bit Little-endian (ppc64el) wiki
  29. Ubuntu Packages Search
  30. How to install IBM Java version 8 on Ubuntu
  31. Try Ubuntu on POWER8 for FREE for 30 days
  32. Snap (Ubuntu) on POWER (and no, not the same as used in AIX)
  33. Tuning 10Gbps NICs
  34. Deep Learning on Power
  35. Linux on Power FAQ with Jeff Scheel
  36. Coherent Accelerator Processor Interface (CAPI)     1     2     3
  37. NVIDIA NVLink     GPU     NVLink 2.0   
  38. SAP HANA      1      2      3      4    
  39. SugarCRM on PowerLinux

 

 

Intel Vendors & VMware have a Oracle Problem

Houston, we have a problem!

Intel server vendors Dell, VCE, HPE, Cisco, Lenovo, Fujitsu, Hitachi, Huawei, white box vendor Super Micro and any other server vendor using Intel chipsets have a problem if their customers use VMware to host Oracle Enterprise products (ie Database).

What’s “their” problem

In a nutshell, Oracle’s position is that customers running their Enterprise products like Oracle Enterprise Edition Database,  licensed by core (all cores in the server x 0.5) in a VMware environment must license every core on every server in which that Oracle workload could ever potentially reside managed by vCenter.  Server vendors, VMware, consultants and so on have a vested interest for Oracle to not do this because this Oracle tax is an extreme approach with their licensing terms that concern customers if they are running Oracle on Intel servers for fear Oracle will initiate a LMS audit leading to a substantial license settlement.

Quick Background

In my previous blog I wrote about “Intel; the Great Charade” where I discuss  each new generation of Intel processors having less performance per core than the previous generation.  As you read this and the ones referenced in this article (VCE & HoB) keep this ‘per core’ licensing approach in mind as this topic is central to how Oracle (typically) licenses its enterprise products.  For example, if a clients current server models are Sandy Bridge or Ivy Bridge era servers and plan to upgrade to the latest generation Broadwell you actually decrease the per core performance while increasing the number of cores per socket (if staying with the same SKU). Meaning 12 Ivy Bridge cores requires a little over 13 rounded up to 14 Broadwell cores to deliver equal performance. You don’t upgrade to get equal performance so you now have to move to a 16 or maybe 18 core SKU to gain additional socket performance or go with a higher frequency & lower core per socket SKU to obtain receive more performance per core….but now do you have enough overall performance?  To summarize my previous blog: It takes more cores from Haswell or Broadwell to equal the performance of the previous generation chips.  Since this increase in performance is at the socket and not with the core or thread (where most databases almost almost always prefer a stronger core vs more cores let alone weaker cores in a socket).  Since Oracle’s license calculation on Intel is to license all of cores in the server x 0.5 you may end up buying 1 or 2 extra Oracle licenses for every upgraded Intel server running VMware so be sure to factor that into your budget.

Who is complaining?

I could write the rest of this blog on this topic alone; around the right and wrong of Oracle’s licensing methods in VMware environments but I’ll defer to the thousands already available on this very topic.  This is not the reason I am writing this blog but to call out the self-serving and irresponsible Call-to-Action from House of Bricks and leader of a major CI player; VCE and to discuss why Oracle has no incentive to stop doing what they are doing.

Chad Sakac, the President of VCE which is the the Converged Infrastructure (CI) arm of EMC and soon Dell as the acquisition of EMC should be complete any day.  He is a regular blogger and in my opinion a master of marketing, technology & motivation.  On August 17, 2016 Chad wrote a blog titled “Oracle, I’m sad about you, disappointed in you, and frustrated with you.” in which he lays out how Intel server customers running Oracle Enterprise products, most often Oracle Enterprise Edition Database, are fed-up with Oracle’s abusive licensing tactics when Oracle Enterprise Edition products are installed and running in VMware.  He passionately pleads years of Oracle licensing frustration on behalf of clients while challenging clients to stand up to Oracle and not let them be bullied anymore.  He admits to selfishly partnering with House of Bricks (HoB), a VCE partner by funding their analysis on this situation.  HoB has been a leading voice in this fight in there own right so receiving compensation from VCE check was the proverbial icing on the cake IMHO as they were fighting the fight anyway.  What is VCE’s angle? They either have, or are losing  business due to clients fear of running Oracle workloads using VMware vSphere & vCenter.  There must be enough business at stake or EMC / VCE is desperate enough (not being critical here, just observing) to force them down this path to take such a in your face approach to Oracle.

House of Bricks, who is VCE’s partner and author of the whitepaper had a generally fair and moderated tone throughout the whitepaper.  That said, I do find they are irresponsible by encouraging VMware customers who are running  Oracle Enterprise Edition products licensed by core/processor (not socket or NUP) to run in configurations which are in direct conflict with Oracle’s standard licensing practices.  I’m not arguing the merits, fairness or legality of those licensing practices so save your comments.

Fight Mr Customer So We Can Sell You More!

Simply stated, Chad Sakac, the President of VCE and House of Bricks are actively encouraging system administrators, DBA’s and IT organizations to not only defend your use of Oracle Enterprise products in VMware environments, VMware clusters and VMware environments managed under vCenter but also to license Intel servers using sub-capacity licensing, using the BIOS to limit access to sockets or cores, only license the cores being used by Oracle.  Do these things and stand up to Oracle.  Do it for you….do it for us….just do it!  Of course, VCE funded the HoB paper but they won’t be funding your legal case (or bills) with Oracle.  All of this “encouragement” while at the same time promoting EMC / VMware / VCE products in lieu of traditional Oracle availability & replication products seems a little disingenuous…maybe….why not just keep your argument on the complaint of Oracle licensing with VMware?.  But instead, among many “do this instead of that” statements such as liminating Oracle RAC and use VMware HA and consider EMC RecoverPoint / SRDF in lieu of Oracle Active Data Guard (ADG).

Multiple agenda’s

Much of the HoB whitepaper feels like a marketing slick for EMC / VCE products. Then to have Chad be the front man out front crying on behalf of all customers seems a little too self-serving.

My Good Buddy Larry

Now back to Oracle….everybody knows I am NO Oracle fan.  A good day is any day I beat Oracle (anybody beats Oracle) or reduces their revenue.  But, with regard to Oracle’s practices on how they license their Enterprise products in a VMware environment, they have ZERO (0) motivation to loosen their licensing rules given Intel’s continued growth in the marketplace – Oracle is in the drivers seat!  Oracle wants customers to buy infrastructure from them running OracleVM with Oracle Linux hosting the Oracle software stack.  Oracle receives ALL of the Sales & Support dollars this way.  In addition to this, Oracle is predisposed to litigate.  Larry likes to fight!  HP and now HPE, SAP, Google (2 suits, going to a 3rd), Rimini Street, Oregon Healthcare, Mars and many more.  The Oracle v Mars case is a recent example of how Oracle goes after customers using their License Management Service (LMS) group to drive license revenue thru audits.  “Mars stated that Oracle was unwilling to “come to a mutually agreeable process” for completing an audit. Oracle then sent Mars a letter stating Mars had materially breached its license agreement”.  The greatest leverage clients have is to move off of Oracle products (hardware & software) to alternative solutions; specifically database variants such as IBM DB2, Microsoft SQL Server or Open Source alternative PostgreSQL from EnterpriseDB not to mention the many NoSQL alternatives that probably do a far better job.

Alternatives

If VCE really wanted to partner with an enterprise quality commercial-grade database technology to help clients run VMware with sub-capacity licensing for just the servers where the workloads are running and find an alternative to Oracle, they should look at IBM’s DB2 . DB2 is available in multiple editions from a free edition to Advanced Enterprise Server Edition.  What makes it different and better than both Oracle or SQL Server is that AESE, for example, includes many of the products & features that a client desires of Oracle Enterprise Edition products yet have to pay for À la carte.  DB2’s AESE cost $56,210 (list price for 70 PVU) per license which would match up against the Oracle Enterprise Edition portfolio which when you add up those products cost over $225K (Note: DB2 ESE is a level down from AESE, cost less and probably meets 90% of the customers requirements so the story just gets better).  DB2 always includes its first year of maintenance then 20% each year thereafter while Oracle always charges 22% for the first year then 22% each year thereafter.  Of course, DB2 runs 2X faster with Linux on POWER vs Intel. Clients can try it out for free in SoftLayer for 30 days running Linux on a OpenPOWER server.  Since LoP isn’t the topic of this blog, I’ll save that for another day but know that at least both Intel with VMware and IBM POWER servers support sub-capacity licensing with virtualization.

DB2-S822LC-vs-HPDL380

I didn’t write this blog to be a shill for IBM’s DB2 either, it just came to me as I was reading the HoB paper as it felt like they were trying to slyly present SQL Server as a more agreeable alternative to Oracle – maybe they are … either way thought I would mention DB2 for some balance.

There is ONE Platform …

At the end of the day, clients have a choice if they run Oracle products such as PeopleSoft, JD Edwards, Oracle Apps, Oracle E-Business Suite (EBS) or standalone Oracle Enterprise products like Database, RAC, WebLogic and many others.  Clients can run Oracle on Intel with VMware then surely deal with the risk and issues discussed by Chad and House of Bricks OR clients could run Oracle on the only platform which controls Oracle licensing without all of the consternation, debate and angst; IBM POWER servers running AIX.  For those who have read this far and were begging to say “But POWER servers have a core license factor 2X of  Intel so they cost twice as much”.  Enough please! I may hire House of Bricks to write a paper to put an end to this FUD, myth and farce. With POWER8 outperforming Intel servers generally around 2X per core it eliminates this argument right here. But, since we are talking about licensing a product at the core level it is important to remember that POWER servers support sub-capacity licensing natively, without debate from Oracle.  Last and most importantly, IBM’s Power Hypervisor suite, called PowerVM manages the compute resources more efficiently where it scales the 2X performance per core advantage typically increasing it up to 4X, 8X, 12X, even 20X (your mileage will vary).  This isn’t a performance advantage as much as it is an efficiency statement.  I call it the “Total Cost of Efficiency” as it takes into account the TCA, Performance advantage & Hypervisor efficiency and depending on the discussion, years 2-5 maintenance which is TCO.  I have personally sized, architected and delivered these solutions to customers who have in turn realized these very savings.

Now the Call-to-Action!

If you believe VMware & Intel are a critical part of your business identity that make your products better then continue using them with your Oracle products. You will pay more (compared to POWER) due to lower performance & less efficiency and pay the Oracle tax.  If you view IT as an enabler to your bottom line and use the right tool for the job then give me a call as I can help you as I have helped dozens of others save $100K’s to $M’s with IBM server technology.   Oh, and for those last few sharpshooters who want to remark that IBM servers are more expensive go ahead and save your comment.  First, I’ll shut you down by comparing a proper IBM server with the class of Intel server that you present me.  Next, we won’t go the 1 for 1 server route. As I recently showed a customer a reduction of 24 x Dell servers with 596 cores or 298 Oracle licenses to 7 x POWER8 servers with 168 cores and Oracle Licenses. My 7 servers are far less expensive than your 24 servers  not to mention the infrastructure required to support it (power cables, LAN/SAN cables, switch ports, cooling, etc). What makes me different is I show you how it’s possible to save  significant money running Oracle on IBM servers. What makes Ciber different is we have an Oracle consulting practice to help you implement, migrate or optimize your environment.

Intel; the Great Charade

Last weekend I was reading a few blogs on Intel’s recent Broadwell chip.  The current offering is the EP variation.  I regularly read & enjoy articles at The Register, The Four Hundred, AnandTech and The Next Platform.  Working with Enterprise platforms for most of my career, I sometimes get critical (maybe sensitive) of x86 technologies.  After reading a few I was motivated to put together a table comparing the features and performance from Nehalem (Gainestown release) through the latest Broadwell-EP E5-26xx v4 chips.  Essentially the 2 socket systems.

I was just enjoying some political tweets when I saw a tweet by @TheRegister promoting

TheRegister_article_04272016

an article on The Next Platform by Timothy Prickett Morgan titled “Intel does the math on Broadwell server upgrades“.  Tim writes “It all comes down to the math …”.  He is right except the premise behind this statement is there is *more* value going with Broadwell-EP (ie E5-26** v4) chips vs previous models.  I am not saying the author is saying this beyond the information as he understand it or was given by Intel.

This prompted me to stop my political tweeting since Trump & Cruz are in my home state today to write this blog.  There has been a “Great Charade” played by Intel duping customers for years.  Setting aside any comparison of Intel server chips to processors from IBM or Oracle, I will just focus on Intel vs Intel over the last 8 years.

For the table below, I pulled data from Intel’s documentation, Wikipedia, from other The Next Platform articles such as “Xeon bang for the buck, Nehalem to Broadwell” and WCCFtech.

Intel_Neh-Broadwell_Comparison

The row labeled with “1” shows the Relative Performance score used from this The Next Platform article.  My methodology is to divide the Rel Perf score by the # max number of cores available with that processor generation to obtain its per core score labeled by the row with a “2”.  The row labeled with “3” shows the % of increase in cores from the previous generation.  The row labeled with “4” is where it gets interesting.  This shows what the score would be if using the Rel Perf per core score for the original Nehalem processor 0f .29 by the number of cores available in the current generation.  So, Ivy Bridge is 0.29 x 12 to obtain 3.48.  The The data in row labeled with “1” comes from Intel even thought I obtained it from The Next Platform article.  Why is this important?  The actual score for the Ivy Bridge processor of 3.73 is greater than the extrapolated score of 3.48.  Having a higher score for row 1 over row 4 is better for Intel performance.  However, when you look at the Haswell & Broadwell-EP processors, the actual score is below the Nehalem extrapolated score indicating there is a decline in per core performance.

Now that you understand the methodology, lets look at the results for each tick-tock.  The Nehalem processor was released 8 years ago with 4 cores and a Relative Performance rating of 1.16 or .29 per core. The next release was the Westmere-EP processor with 6 cores having a chip score of 1.98 or .33 per core.  Westmere was followed by Sandy Bridge-EP with a Rel Perf score of 2.55 for its 8 cores or .32 per core. After Sandy Bridge was the long awaited and much hyped Ivy Bridge delivering 12 cores for the EP model. Its Rel Perf score of 3.73 translates to .31 per core.  Notice the trend? After IB-EP was Haswell-EP with 18 cores delivering a 5.20 Rel Perf score or .29 per core leading us to the latest and greatest Intel offering; Broadwell-EP with 22 cores & a 6.34 Rel Perf score or .29 per core.

What does this mean? With each Tick-Tock or successive release, Intel touts magnificent performance yet many of the improvements and performance benefits tout the total socket capacity vs its per core capabilities.  There is nothing wrong with socket totals if this is whats required or your software is priced in this fashion.  However,  many enterprise ISV’s charge license & maintenance fee’s based on cores.  Some are based on the total number of cores in the server such as Oracle and others simply base it on the number of cores required.  Either way, the stronger the core the better.

Yet the data shows that per core performance peaked with Westmere-EP followed by Sandy Bridge-EP.  At best you could argue performance has been flat over the last 8 years with little hope for the two anticipated successors in SkyLake and CannonLake.  I extrapolated the data using the same methodology showing performance will be flat to regressing.  This of course is consistent with the Intel Exec VP & GM William Holt who said “The best pure technology improvements we can make will bring improvements in power consumption but will reduce speed“.  Intel began moving away from Moore’s Law to an economic and financial model to remain on a tick-tock schedule rather than taking the approach to build an improved chip; not just one with more capacity.  Intel marketing is forced to hype the capacity increases in the latest chips as performance when it was mainly due to the addition of cores.  Yes, there were micro-architecture improvements but that benefits the internal plumbing to maintain coherence & data flow through increased cores. Core counts increased by 50%, then 66% and now it is slowing down with Broadwell-EP as they run into another problem which Intel’s Holt points to as well…..maintaining performance while maintaining TDP.

All of this as Intel moved from PCIe2 to PCIe3, DDR3 to DDR4 memory, more memory channels per controller and enhancing the QPI bus.  What is more telling with Intel  is that clock speeds have not just stalled but decreased with the top end chips because Intel is unable to deliver high core counts with high frequencies. All models still deliver 2 threads per core,  per core L3 cache has modestly increased with Nehalem at 2 MB to 2.5 MB.

The data speaks for itself.  Intel has perpetrated this Great Charade convincing customers they have receive increased performance with each successive processor release when in fact they are buying flat performance, subsidizing Intel while increasing software licensing / maintenance costs.

Oracle’s at it again – stuffing a card up their sleeve!

Oracle continues its record of having 0 (i.e. ZERO) credibility.  How many times has Oracle been called out for publishing & making statements about competitors solutions that were just flat out wrong leading one to wonder if it is more than the standard competitor FUD and benchmark exaggerations but purposefully meant to mislead.

Take a recent Oracle blog post by @Brian-Oracle at https://blogs.oracle.com/BestPerf/entry/20160317_sparc_t7_1_oltp.  Oracle is hell bent to produce a TPC-C benchmark on a POWER8 server since IBM has not.  I do not work for IBM and have not heard any official reason but have heard they do not see TPC-C as a good benchmark of platform performance which is why you do not see any entries since 2013 by any vendor.

There is a Oracle Marketing troll who posts as @PlinkerTind for this El Reg article http://forums.theregister.co.uk/forum/1/2016/04/07/open_power_summit_power9/?post_received=2834982#c_2834982 who asks what is IBM scared of.  What he fails to disclose is that IBM would love to run a Oracle benchmark on POWER8 but the software license agreements state if the product is being used for benchmark purposes it requires the approval of the owning company.  Well, Oracle doesn’t permit it except for Oracle benchmarks such as Oracle EBS.  Why would Oracle not want to let IBM conduct a benchmark using Oracle DB? Because it would show what customers see who run it and what prospects wee who evaluate it that POWER controls software licensing; Oracle, DB2, EnterpriseDB, and every other product.  Fewer servers, fewer sockets, fewer cores, etc.
Back to the Oracle blog, author writes “On a per chip basis, the SPARC T7-1 server demonstrated nearly 5.5 times better performance compared to an IBM Power System S824 server”.  Let’s break it down using the authors “vernacular”.  A T7-1, although it is actually 8 x quad core chiplets and not a single 32 core chip as Oracle likes to claim,  yet this author along with the other Oracle marketing trolls refer to a 2 socket S824 & S822 as a 4 chip system – essentially for the Scale-Out servers, they call each socket two chips because of how IBM builds the chip using a Dual Chip Module (DCM) vs the Single Chip Module (SCM) in the Enterprise servers.  Now,  IBM who engineered the chips says it works functionally as 1 chip in 1 socket.   (Ref: IBM POWER8 S824 Redbook http://www.redbooks.ibm.com/redpapers/pdfs/redp5097.pdf).

So, the Oracle blog authors says the SPARC  32 core chip, by HIS words is 5.5X better performance than the POWER8 S824 server. Thus, 6 cores vs 32 cores or 5.33X.  6 cores because Oracle is comparing Chip to Chip.  Thus, they consider it reasonable and credible to compare their 32 core SPARC T7 chip vs a 6 core POWER8 chip.  That is so disingenuous.
Next, the author chose the 24 core S824 running at 3.52 GHz vs the 4.13 GHz T7-1. Why didn’t Oracle pick the 16 core S824 running at 4.15 GHz?  That way they could call it a 4 chip, 2 socket with 4 cores per chip system vs Oracle’s 32 core, single socket, single chip (that is really 8 x quad chiplets) system. Using the 16 core S824 would give the SPARC T7-1 server 2X more cores allowing for easier extrapolation?  Oracle did set the ASMI mode to favor performance but it is the 2nd best option to use (there is a better option but since Oracle doesn’t know the platform they either chose not to or didn’t know what to select). Even with this set, their is still a clock frequency discrepancy.  Now, I’m not hung up on the clock frequency because most Intel servers have lower clock frequency.  Unlike Intel which cannot run all of their cores at the higher clock frequency like POWER there are times when the clock frequency comparison being made is vastly different can’t be helped.  That’s not the case though with POWER.  IBM offers servers ranging from 3.0 to 4.35 Ghz making it easy for them to choose one that makes the comparisons as close as possible.

Next the author says “On a per core basis the SPARC T7-1 server demonstrated nearly 3% better performance per core compared to an IBM Power System S824 server.”. I’ll just refer to the above paragraph where the T7 clock frequency was running 17% higher.  Then he says “At the system level, the SPARC T7-1 server demonstrated nearly 1.4 times better performance compared to the IBM Power System S824 server.”. 24 cores times 1.4 = 33.6……hmmm. You tested a 1 socket vs a 2 socket server running with a 17% higher clock.  I point out the 1 vs 2 socket server because with POWER  processors I would expect a single socket to be slightly better performing than a 2 socket than a 4 socket than a > 4 socket server.  Taking into account other factors that do not require the memory & I/O provided by those extra sockets.  Again, if they want to test on a per core basis that can be done with any system. If they wanted to test on a per socket basis then do it with the T7-1 and even use the S824 but only use 12 cores.  Otherwise, compare a T7-2 vs a S824 which would be 64 vs 24 cores.

Read the comments for an article about POWER9 at AnandTech http://www.anandtech.com/show/10230/ibm-nvidia-and-wistron-develop-new-openpower-hpc-server-with-power8-cpus-nvlink.   Look for comments by @Brutalizer who is an Oracle Marketing troll.  He gets crushed by the the commenters as they rightly point out that Oracle ran the Oracle benchmark on the POWER8 server with no disclosure on the full details of how the server was configured; How many DIMMs were used?  Filling all 16 DIMM slots makes a difference than just 8 or 4 DIMMs since all 3 configuration options can achieve the configured 512 GB Ram. Although a few tunables were disclosed as if to demonstrate that Oracle made an effort to give the POWER server a fair shake, I question the ones used. I won’t disclose what I would have done differently as I like that Oracle looks like petty fools in their effort to show Oracle on POWER8 performance. If they were interested they would authorize IBM to run their own benchmark – or accept my POWER challenge where we run a customers workload on each of our servers.  Alas the cowards have yet to acknowledge it let alone accept it.

The lesson I hope readers learn from my blog is not that Oracle software and hardware products are bad, they are not at all.  However, they have this seemingly uncontrollable need to overstate and mislead customers by any effort to get customers to consider and god forbid buy their products.  Yes, in this poker game we all play there is bluffing and smart play but with most vendors it is within the rules.  With Oracle they always seem to have a card stuffed in their sleeve as they seem incapable of competing fairly making them resort to unscrupulous behavior such as the Oracle blog.

P.S.  I do not accept any of the results obtained by Oracle testing the S824.  If IBM conducted the same test running Oracle with AIX on POWER8 I am confident the results would make the S824 look far better than stated by Oracle.  One can only draw the conclusion that Oracle optimized their T7-1 to achieve the most favorable results.  IBM should have the same opportunity.  Of course, my Power challenge to Oracle is the real-world test using actual customer data.  Maybe this blog will get Oracle to man-up!